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Abstract Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1)
is an enzyme that catalyzes the cleavage of N-ribosidic bonds of
the purine ribonucleosides and 2-deoxyribonucleosides in the
presence of inorganic orthophosphate as a second substrate. This
enzyme is involved in purine-salvage pathway and has been
proposed as a promising target for design and development of
antimalarial and antibacterial drugs. Recent elucidation of the
three-dimensional structure of PNP by X-ray protein crystallog-
raphy left open the possibility of structure-based virtual
screening initiatives in combination with molecular dynamics
simulations focused on identification of potential new antima-
larial drugs. Most of the previously published molecular
dynamics simulations of PNP were carried out on human PNP,
a trimeric PNP. The present article describes for the first time

molecular dynamics simulations of hexameric PNP from
Plasmodium falciparum (PfPNP). Two systems were simulated
in the present work, PfPNP in ligand free form, and in
complex with immucillin and sulfate. Based on the dynamical
behavior of both systems the main results related to structural
stability and protein-drug interactions are discussed.
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Introduction

Malaria was first reported in the fifth century B.C. by
Hippocrates, being one of the oldest human diseases [1].
Current World Health Organization estimates indicate that
malaria infection causes 300 million cases of acute illnesses
and at least one million deaths yearly [2].

Malaria is caused by the single-celled protozoan parasite,
Plasmodium, an organism from the phylum Apicomplexa
[3]. Several methodologies have been employed to break
the cycle of malaria transmission, such as mosquito control,
bed nets, antibiotics, and education, but the lack of reliable
employment of these methods has resulted in continued
epidemics of malaria [4]. Standard antimalarial drugs such
as chloroquine, quinine, amodiaquine, halofantrine, mefloquine,
cycloguanil, and pyrimethamine were initially successful, but
drug resistance has developed and contributes to the current
resurgence of the disease [5].

Purine metabolism in Plasmodium falciparum has been
proposed as a potential target for antimalarials since it is
distinct from that of humans. Plasmodia species are purine
auxotrophs; that is, they are not able to synthesize purines
de novo [6]. To provide purines for nucleic acids synthesis
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in the course of cell growth, the P. falciparum is dependent
on a salvage pathway that employs nucleosides sequestered
from the host. PNP is a key enzyme in this pathway
(Fig. 1). This enzyme catalyzes the phosphorolysis of
inosine to ribose-1-phosphate and hypoxanthine, which is
the major purine precursor for salvage pathway [7]. PNP is
of pivotal importance for parasite metabolism, which has
been demonstrated in studies carried out previously with
transition-state analogues that prevent enzyme activity and
cause parasite death [8, 9].

Metabolic pathways for purine salvage are significantly
distinctive in humans and apicomplexan organisms. The
adenosine deaminase and PNP from the P. falciparum
recognize 5′-methylthionucleosides as favorable substrates,
while the respective human enzymes do not [10].

In 2004 the structure of PNP from Plasmodium
falciparum (PfPNP) was determined by X-ray diffraction
crystallography. The structure of PfPNP is complexed with
sulfate and its natural substrate inosine [11], there is also
structural information for the complex with immucillin-H
(IMMH), a potent inhibitor of PNP [12], in this context
molecular dynamics (MD) simulation can contribute to
understanding of structural patterns and biological behavior
of proteins under solution condition avoiding the effects of
crystal packing over PfPNP. So in the present work we
analyzed the structure of PfPNP unbound and in complex
with IMMH aiming to identify the structural differences for
the substrate interactions in the binding site. The structural
features and the structural stability in aqueous solution were
assessed by MD simulation. In addition, this is the first
report of molecular dynamics simulations for a hexameric
PNP, which provides a dynamic view of the protein
structure, which can be further employed in cross-docking
simulations and structure-based virtual screening.

Materials and methods

Molecular dynamic simulations

The crystallographic structure of PfPNP was retrieved from
the Protein Data Bank [13] under access code 1NW4 [12].

This structure is a hexamer (chains A, B, C, D, E, and F)
(Fig. 2), the entire protein was used for the simulations
because it is biologically functional as a hexamer and the
active site is located at the dimer interface.

MD simulations were performed with the GROMACS
3.3.1 [14] package using the Gromos 96.1 (53A6) force
field [15]. The IMMH topology file and force field
parameters except the charges for inhibitor IMMH were
generated by the PRODRG program [16]. The GAMESS
program [17], was used for the atomic charges in the
IMMH molecule which were submitted to single-point ab
initio calculations at RHF 6-31G* level in order to obtain
Löwdin derived charges. Manipulation of structures was
performed with the Swiss-PDBViewer v3.7 program [18].
We simulated two systems. System 1 was composed by the
PfPNP stripped of ligands and system 2 was formed by
PfPNP in complex with 22 sulfate ions and immucillin-H
(PfPNP:IMMH:SO4). Both simulations were run for a time
period of 5 ns. In both systems were added Na+ counter
ions using Genion Program of the GROMACS simulation
suite in order to neutralize the negative charge density of
the systems.

Each structure was placed in the center of a truncated
cubic box filled with extended simple point charge (SPC/E)
water molecules [19], containing ~56,500 water molecules
in both systems. The initial simulation cell dimensions were
9.53 nm×9.31 nm×8.79 nm for both systems, and had the
protein solvated by a layer of water molecules in which the
minimum distance between the protein surface and the box
face was 1.0 nm length in all directions.

During the simulations, bonds lengths within the
proteins were constrained by using LINCS algorithm [20].
The SETTLE algorithm was used to constrain the geometry
of water molecules [21]. In the MD protocol, all hydrogen
atoms, ions, and water molecules were first subjected to
1500 steps of energy minimization by steepest descent
followed by 1500 steps of conjugate gradient to remove
close van der Waals contacts. The systems were then
submitted to a short molecular dynamic with position
restrains for a period of 30 ps and afterwards performed a
full molecular dynamics without restrains. The temperature
of the system was then increased from 50 K to 300 K in 5

Fig. 1 Phosphorolysis of ino-
sine catalyzed by P. falciparum
PNP. The product hypoxanthine
is the major precursor for the
purine-salvage pathway
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steps (50 K to 100 K, 100 K to 150 K, 150 K to 200 K,
200 K to 250 K, 250 K to 300 K), and the velocities at each
step were reassigned according to the Maxwell-Boltzmann
distribution at that temperature and equilibrated for 10 ps
except the last part of thermalization phase that was for
50 ps. Energy minimization and MD were carried out under
periodic boundary conditions. The simulation was computed
in the NPT ensemble at 300 K with the Berendsen
temperature coupling and constant pressure of 1 atm with
isotropic molecule-based scaling [22]. The LINCS algo-
rithm, with a 10-5 Å tolerance, was applied to fix all bonds

containing a hydrogen atom, allowing the use of a time step
of 2.0 fs in the integration of the equations of motion. No
extra restraints were applied after the equilibration phase.
The electrostatic interactions between non-ligand atoms were
evaluated by the particle-mesh Ewald method [23] with a
charge grid spacing of ∼1.0 Å and the charge grid was
interpolated on a cubic grid with the direct sum tolerance set
to 1.0×10-5. The Lennard-Jones interactions were evaluated
using a 1.0 nm atom-based cutoff.

All analyses were performed on the ensemble of
system configurations extracted at 0.5 ps time intervals

Fig. 2 a) Tertiary structure of
the homohexamer of PfPNP
complexed with IMMH and
sulfate ions. b) Close-up of
PfPNP monomer. The structure
is presented as ribbon diagram
and IMMH and sulfate ions are
presented as stick

Fig. 3 Graphical representation
of root-mean-square deviation
(RMSD) of all Cα as a function
of time. The black line gives the
PfPNP and gray line shows
PfPNP:IMMH:SO4 calculation
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from the simulation and MD trajectory collection was
initiated after 1 ns of dynamics to guarantee a completely
equilibrated evolution. The MD simulation and results
analysis were performed on a DS-Server DuoQuadCore
550 Xeon – 3.00 GHz.

The convergences of the different simulations were
analyzed in terms of the secondary structure, radius of
gyration (RG), root mean-square deviation (RMSD) from
the initial models structures, and root mean-square fluctu-
ation (RMSF).

The RMSFs were calculated relative to the last 4 ns
averaged backbone structures, and all coordinate frames
from the trajectories were first superimposed on the initial
conformation to remove any effect of overall translation
and rotation.

Results and discussion

Stability and flexibility of PfPNP and PfPNP:IMMH

Molecular dynamics simulations were carried out for two
systems: PfPNP structure in ligand-free form and the
complex PfPNP:IMMH:SO4. The main purpose of this
study is to elucidate the influence of IMMH on the overall
structure of the PfPNP. In order to monitor the progress of
PfPNP conformational changes and check the stability of its
secondary structure elements during the simulation, we
evaluated the root-mean square deviation (RMSD) of the
positions for all backbone C-alpha atoms as a function of
simulation time. As we can see in Fig. 3, the overall
structures were stable along the MD simulations. Analysis

Fig. 4 Radius of gyration of the
PfPNP (black line) and PfPNP:
IMMH:SO4 (gray line) over
simulation

Fig. 5 Graphical representation
of root-mean-square fluctuations
(RMSF) of all Cα from starting
structure of models as a function
of time. The graphic shows the
RMSF of uncomplexed PfPNP
and of PfPNP:IMMH:SO4
complex. The average of last
4 ns of calculation gives in black
line uncomplexed PfPNP and
gray line shows PfPNP:IMMH:
SO4 complex
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of this figure indicates that the uncomplexed structure
(system 1) presents higher RMSD when compared with the
structure of the complexed structure (system 2). In both
systems the RMSD of C-alpha atoms after a rapid
increasing show a relative stability during overall MD
simulation, achieving a plateau between 2.0 and 2.5 Å,
suggesting that 5 ns of unrestrained simulation was
sufficient for stabilizing PfPNP and PfPNP:IMMH:SO4
structures.

Accordingly, the PfPNP:IMMH:SO4 complex structure
appears to be slightly more stable than the ligand-free form
of the enzyme as shown in Fig. 4, which suggests a slightly
compacting process due to the presence of IMMH and
sulfate ions.

Superposition of the average structure of PfPNP:IMMH:
SO4 with the initial model (data no shown) does not show

major conformational changes from the initial structure,
which is consistent with the relatively low RMSD value.
System 1 presents higher RMSD values, however its
secondary structure was kept, and these high values are
due to the flexibility of the uncomplexed form of PfPNP.

The flexibilities of the proteins were assessed by the
RMSF values from MD of the trajectory which reflects
the flexibility of each atom residue in a molecule (Fig. 5).
The major backbone fluctuation occurs in the loop region
and in the region surrounding the beta-alpha-beta fold,
whereas regions with the low RMSF correspond exclusively
to the rigid beta-alpha-beta fold. These results indicate the
stability of structures in aqueous solution. In Fig. 5 we can
observe higher flexibility in PfPNP in the loops regions
constituted by residues 219–222 and 159–169 in relation of
the complex PfPNP:IMMH:SO4. These loops are responsi-

Table 1 Hydrogen bonds and
hydrophobic contacts of PfPNP
with IMMH of monomer A
during MD simulation

Time Residues(Chain) Atoms Distance (Å)

Ser91(A) OG N4' 3.3
Met183(A) N O2' 2.8
Glu184(A) OE1 O2' 2.9

OE1 O3' 3.2
OE2 O3' 3.1

Asp206(A) OD1 N7 2.8
His7(B) NE2 O5' 2.8

Ser91(A) O O2' 2.8
O O3' 3.1

Arg88(A) NH2 O3' 3.1
Tyr160(A) OH N4 3.3

Gly65(A) O O5' 3.2
Ser91(A) O O2' 2.5

O O3' 3.2
Tyr160(A) OH N4' 3.1
Glu184(A) OE1 O5' 2.6

Ser91(A) O O2' 2.8
O O3' 2.9

Ser91(A) O O2' 3.1
O O3' 3.3

Met183(A) OE1 N1 2.8
SD O5' 3.4

Met159(A) O N1 3.2

Ser91(A) O O2' 2.7
O O3' 3.4

Met159(A) O N1' 3.2

Hydrogen bond Hydrophobic contact
Residues(Chain)

In
iti

al
 s

tr
uc

tu
re

2 
ns

4 
ns

5 
ns

Cys92(A)
Tyr160(A)
Trp212(A)

1 
ns

Met183(A)
Trp212(A)

Cys92(A)
Met183(A)
Trp212(A)

Met183(A)

3 
ns

Cys92(A)
Met183(A)
Trp212(A)

Tyr160(A)
Val181(A)

Trp212(A)
Tyr160(A)

J Mol Model (2010) 16:543–550 547



ble for substrate entrance and exit, as has been observed in
the human PNP [24–36], and the flexibility is responsible to
structural movement due to ligand binding.

Interaction of PfPNP with IMMH

The specificity and affinity between enzyme and its
inhibitor depend on directional hydrogen bonds and ionic
interactions, as well as on shape complementarity of the
contact surfaces of both partners [37–53]. Analysis of the
hydrogen bonds between PfPNP and IMMH reveals seven
intermolecular hydrogen bonds. The residues involved in
the interaction with IMMH and its length are shown in
Table 1.

Along simulation of 5 ns the residues which make
intermolecular hydrogen bond and hydrophobic contacts
changes significantly, however some residues keep in
contact with IMMH. The Ser91, Tyr160, and Glu184
maintained associated with IMMH at most part of MD by
hydrogen bond or hydrophobic contact.

In despite of relative high flexibility of purine binding
site, the IMMH presents a conformational stability into
binding pocket (in Fig. 6 is shown the RMSD of IMMH).
This stability suggests that designing of IMMH analogues
and addition of chemical groups may improve electrostatic
interactions with residues in the purine binding site.

Phosphate/sulfate-binding site

In the PNP:IMMH:SO4 structure, residues Gly23, Arg88,
Ser91, and Arg45 of adjacent subunit form intermolecular

hydrogen bonds with the sulfate bound close to the
inhibitor. It was observed that the phosphate/sulfate-binding
site keeps the same interactions with sulfate ions over MD
simulations, suggesting that is a more stable than purine-
binding site. In light of this observation, phosphate/sulfate
binding site could become an alternative site for design of
new inhibitors as observed by Timmers and co-workers
[24] in human purine nucleoside phosphorylase (HsPNP).

Conclusions

This is the first report of a molecular dynamics simulation
for a hexameric PNP. Molecular dynamics simulations of
trimeric PNPs [24] has been previously reported. We
focused our simulation studies on PNP from Plasmodium
falciparum, due to its importance as a target for antimalarial
drug development. The simulation of this hexameric
structure brings new information about structural stability
and PNP:IMMH interactions. IMMH is a transition state
inhibitor with Ki in the picomolar range, which raises a
problem due to its high affinity for human PNP. Therefore
development of IMMH analogues with more selective
activity will be the only way for the development of PfPNP
inhibitor. The determination of interactions along the time in
aqueous solutions could guide the process of designing or
searching through virtual screening of new potential ligands.
Identification of intermolecular interactions involving resi-
dues Gly23, Arg88, Ser91, and Arg45 of adjacent subunit
completes the view of the active site that should be addressed
in molecular docking simulations. In addition, the data

Fig. 6 Graphical representation
of root-mean-square deviation
(RMSD) of each IMMH struc-
ture from starting structure of
monomers as a function of time
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presented here suggest the mode of action for IMMH, with the
conformational changes of the substrate binding loop
involved in substrate entrance and exit, clearly seen when
we compare molecular dynamics trajectories of both systems,
ligand-free form (system 1) and complexed (system 2).

The phosphate/sulfate binding site has low mobility
when complexed with sulfate and higher motion in ligand-
free form, based on this observation we propose that this
region is more stable when compared with purine binding
site. Furthermore, the experimental studies could demon-
strate that an alternative site can be useful for design of
inhibitors.
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